How to implement it ? Comment la rendre active ?

lundi 28 juin 2010

Gulf pollution, improved fast solutions

Gulf pollution, improved fast solutions

Hello,

Answers to your remarks of today

Patent improved below with new ways.

1) Gore Tex pipe, new fast solution.

We produce a long and large pipe in Gore Tex textil or analog, mixed with Kevlar type and reinforced with carbone or analog strong rings and supports, with multilayers Gore Tex to filtrate verticaly or nearly horizontaly in some segments gazes and fluid all along the 1.5 km or more tube.

This large textile or analog tube is firmly fixed to a  very big tire half full of led or cement and sent along cables in order that this system is capping fully and largely the well, in such a way that all fluids have to go up  along this large pipe, with a succion effect to improve the collection.



2) Source solution :

Patent improved and adapted.

Abstract of WO 9218746  (A1)
http://v3.espacenet.com/publicationDetails/biblio?CC=WO&NR=9218746&KC=&
FT=E

A robot for sealing and blocking pipes which are subject to very high
pressure. The robot comprises a counter-pressure device below the main
blocking portion for simultaneously acting on the inner wall, at depth
in the pipe, by expansion caused by a single linear movement of a
tapered shaft in a cylinder having therein a tapered bore; said shaft
having a diameter which is 50 % greater than the difference between the
inner taper diameters of the two ends of the cylinder, which cylinder
has a slot running the full length thereof and is controlled by
hydraulic jacks; a centre pipe allowing oil flow and normalising the
upward pressure during the insertion process; and two pantographs for
centering the system in the well in spite of the very high pressure.
The high pressure in the well helps ensure blocking of the system.

Data supplied from the espacenet database — Worldwide
http://v3.espacenet.com/publicationDetails/biblio?CC=WO&NR=9218746&KC=&
FT=E


http://v3.espacenet.com/publicationDetails/biblio?CC=WO&NR=9218746&KC=&FT=E


Mexico deepwater spills, answers to objections.
Hello

Following your questions.

Yes, both methods will work.

Especially the second using just the pressure to flatten lead and
steel against the walls by reinforcing on the desired length, leaving
the transition to the new high pressure with safety valves of high
technology. This method is reversible, if desired.

In Switzerland, given the high-head dams and high pressures, we are
used to developing valves resistant to high pressure. They will never
really be closed but will be used to regulate the new system of pipes
with multi-layer textile type goretex mesh that filter the full length
(1.5 km) different gaseous and liquid substances, depending on size of
the desired molecules, the smallest (CH4) in the outer layer, the
largest (oil) into the inner layer, the average in the middle layers,
which reduces pressure and suppresses serious pollution by sorting
them.

The inner layers will be closed down (as a cyclist trousers) but not
the outer layers (such as a trouser leg of an elephant trouser), which
will collect all residual leaks from each well by sucking up.

Parachutes with the same conduits and collectors are always open, most
with perforated domes and cables attached to concrete blocks and
submerged buoys, there will always be one above the other, like a
waterfall in reverse for more security.

Another similar device, but half open annular overhang to the ground,
will be around each well, to collect what falls around.

We believe our solutions to be better, at least better than nuclear
explosions seriously considered, but disastrous and apocalyptic if the
fault grows on the largest known reserves of oil pollution and a
global and systemic problem.
Mexico deepwater spills, swiss solutions.

To Mr. President BARACK HUSSEIN OBAMA,
To BP Directors

Here's our NEW open letter urgent, because our various written
proposals and phones calls of May and June have been rejected without serious analysis.


OUR FAST SOLUTIONS:

The nuclear project is not a solution. The evil would be infinitely
worse, the terrible and irreversible breached leaking for years.

Try at least the Swiss solution, it does not cost so much.

Recovery systems and blockage of oil submarines spills.

Armies are able to drop tanks with big parachutes.

We use such parachutes in the first phase, given the urgency drama.
They are dropped above the wells from the air. Once arrived at the
open sea surface, they are kept deployed by elastic poles or any other means a few meters below the water.

Every zenithal hole (top) is equipped with pipes to several layers of
Goretex type material, riveting first emergency phase and led via
submarine or cables fixed on concrete blocks above the wells spilling.

Parachutes are brought into open water and attached to the seabed
(concrete blocks or ground anchors with cables, pulleys or rings) above or
adjacent wells on the run. The flow of oil is recovered by adjusting
the slope of the parachutes, sausage-like tubes filled with air,
attached to parachutes or elastic curved poles.

A part or stretch of parachutes can even stand on the
soil of the sea to raise near 100% of pollution.

The pipes are several layers of fabric, made rigid by braces and
vertical annular tubes of elastic plastic or filled with air as necessary rigidity.

The goretex pipes and parachutes will be calibrated based on the sizes
of the molecules of methane, ethane, propane, butane, hydrogen
sulfide, benzene, methylene chloride and methylene chloride etc and
large molecules of oil, in order to miss the gas but keep the most
toxic and oil, followed by a second phase Velcro.

We are improving.

Given the high gas pressure, these new improved "parachutes" are made
of Kevlar and Goretex, with carbon fiber reinforcement and textile
pipes can be filled with air or plastic elastic poles.
Loads of air are already here, ready to
be triggered. The hole is also equipped at its summit and is
reinforced with Velcro, to avoid leaks in the pipes.

You can superimpose several parachutes on each other to collect all
the leaks, like a waterfall in reverse. Indentations working remotely,
including remote controlled air-filled textile pipes on Velcro,
connections are made on the sides of parachutes to maximize the
harvest. Altitude are remotely controlled according to the currents.
This could even be monitored by cameras, sensors and motors to follow currents and events.

The oil can be sucked to accelerate the process.

The pipes are layered and can be opened or closed all the way like
curtains to several segments, horizontal or vertical, to regulate the
flow and the internal pressure of gas and fluid flow. The pressure of
water is less a problem because the system is open from below.
The various gases  highly toxic can be sorted by vertical pipes done as
Russian dolls, by the dimensions of the small holes in the gore-tex coats.

Hydrogen sulphide (rate accepted: 8 ppb = parts per one billion = parts per
billion, measured rate: 1200 ppb), benzene (rate listed: 4 ppb; rates
measured 3000 ppb), and methylene chloride (rate allowed : 61 ppb,
measured rate: 3000-3400 ppb). These gases can kill men inflicting
every sort of damage to blood and heart, and the deformation of babies
before birth. In addition, the last gas (methylene chloride) is
flammable ... so under water harvesting and neutralizing should be
agreed with the chemists.

In case of typhoon, everything is harvested in large containers
underwater a few feet under water to be emptied as soon as weather
permits.

Blocking of wells, judo technique, using the HIGH pressure control.

A package of flexible segments directed by pantographs open to
multiple directions of alignment is threaded through the base pipe of
the well. The mounting pressure will bring the device automatically
upwards.
The pressure effect aligns the train made flexible and steerable in
the axis of the upper directional system.
From the first segment, while the train is fitted in the center of a
rod slightly conical controllable remotely by a hydraulic axis stepper
ratchet.

The central stem taper remotely pushes upward and runs up and depart
the train pipe to the desired depth for maximum strength. The pipe
walls made of pliable but resilient (e.g. hard lead or cast lead ) and / or
stainless-steel slotted for a central segment will therefore be
pressed firmly against the other outer pipe already in place.

On this conical stem growing from the bottom-up, is disposed a
screw-type propeller helicoidal Archimedes screw, which initially
is blocked but let the high pression fluids pass,

Then, when desired by remote control, the big screw is released.

Under the effect of pressure, this will rise by departing along the axis of
cone rotation and will automatically block the well. The walls of
pliable but durable stainless steel or cracked and will definitely
locked and sealed. The extreme pressures require extreme metals.


An open valve connectable to the recovery pipe is among the top of the
train segments. It may help fine-tune the flow and recovery of the
well.

A finer adjustment can be made by remotely controlling the central
conical axis along all segments, as many as necessary to resist to the high pressure
all along the first fixed old pipe already in place.

If the old pipe is horizontal, we need to fix roller bearings on the
perimeter of the first new segment entering and also fix metal rolls on the floor
at the entrance to facilitate the horizontal introduction of the new
train of segments.


Copyright: www.suisse-plus.com , Lausanne, Switzerland.
Patent pending
Patented. Copyright: www.suisse-plus.com , Lausanne, Switzerland.
Patent pending
Patented.

Text original.

Bonjour,

Suite à vos questions.

Oui, les deux méthodes fonctionneront.

Surtout la 2ème qui utilise justement cette pression pour plaquer de
manière continue et réversible si désiré le plomb et l'acier contre
les parois en les renforçant sur la longueur désirée, tout en laissant
le passage à la forte pression avec de nouvelles vannes de sécurité de
haute technologie.

En Suisse, vu les barrages de haute chute et de haute pression, nous
avons l'habitude de concevoir des vannes sphériques ultra résistantes
aux très hautes pressions. Elles ne seront plus jamais vraiment
fermées mais serviront à réguler pour le nouveau système de tuyaux à
multi-couche en textiles de type goretex maillées qui filtrent sur
toute la longueur ( 1,5 km ) les différentes substances gazeuses et
liquides, en fonction des tailles des molécules désirées, les plus
petites ( CH4 ) dans la couche extérieure, les plus grosses de pétrole
dans la couche intérieure, les moyennes dans les couches médianes, ce
qui diminue les pressions et supprime les très graves pollutions en
les triant.

Les couches intérieures seront fermées en bas ( comme un pantalon de
cycliste ) mais pas les couches extérieures ( comme un pantalon patte
d'éléphant ), ce qui permettra de récolter toutes les fuites
résiduelles de chaque puits en les aspirant vers le haut.

Les parachutes avec les mêmes tuyaux récolteurs et ouverts en
permanence, la plupart grâce à des dômes ajourés et des câbles fixés
aux blocs de béton et aux bouées immergées, seront toujours là les uns
au-dessus des autres, comme une cascade à l'envers, pour plus de
sécurité.

Un autre dispositif similaire, mais annulaire mi-ouvert en surplomb
jusqu'à terre, sera autour de chaque puits, pour récolter ce qui tombe
autour de chaque puits.

Nous croyons nos solutions les meilleures, en tout cas meilleures que
les explosions  nucléaires sérieusement envisagées, mais désastreuses
et apocalyptiques si la faille s'agrandit sur la plus grande réserve
de pétrole connue et gaspillée en une pollution mondialisée...


Copyright: www.suisse-plus.com  , Lausanne, Switzerland.
Patent pending
Patented.


Best Regards

François de Siebenthal

14, ch. des Roches
CH 1010 Lausanne
Suisse, Switzerland

00 41 21 616 88 88


Aucun commentaire:

Enregistrer un commentaire

Archives du blog